cos45÷sec30+cosec30 answer please
Answers
Answer:
LHS=RHS
@
Step-by-step explanation:
(cos 45°)/(sec 30° + cosec 30°)
(cos 45°)/(sec 30° + cosec 30°)`=(1/sqrt2)/(2/sqrt3+2) = (1/sqrt2)/((2+2sqrt3)/sqrt3)`
(cos 45°)/(sec 30° + cosec 30°)`=(1/sqrt2)/(2/sqrt3+2) = (1/sqrt2)/((2+2sqrt3)/sqrt3)``= sqrt3/(sqrt2(2+2sqrt3)) = sqrt3/(2sqrt2+2sqrt6)`
(cos 45°)/(sec 30° + cosec 30°)`=(1/sqrt2)/(2/sqrt3+2) = (1/sqrt2)/((2+2sqrt3)/sqrt3)``= sqrt3/(sqrt2(2+2sqrt3)) = sqrt3/(2sqrt2+2sqrt6)``= (sqrt3(2sqrt6-2sqrt2))/(((2sqrt6)+2sqrt2)(2sqrt6-2sqrt2))`
(cos 45°)/(sec 30° + cosec 30°)`=(1/sqrt2)/(2/sqrt3+2) = (1/sqrt2)/((2+2sqrt3)/sqrt3)``= sqrt3/(sqrt2(2+2sqrt3)) = sqrt3/(2sqrt2+2sqrt6)``= (sqrt3(2sqrt6-2sqrt2))/(((2sqrt6)+2sqrt2)(2sqrt6-2sqrt2))``= (2sqrt3(sqrt6-sqrt2))/((2sqrt6)^2 - (2sqrt2)^2) = (2sqrt3(sqrt6-sqrt2))/(24-8)= (2sqrt3(sqrt6-sqrt2))/16`
(cos 45°)/(sec 30° + cosec 30°)`=(1/sqrt2)/(2/sqrt3+2) = (1/sqrt2)/((2+2sqrt3)/sqrt3)``= sqrt3/(sqrt2(2+2sqrt3)) = sqrt3/(2sqrt2+2sqrt6)``= (sqrt3(2sqrt6-2sqrt2))/(((2sqrt6)+2sqrt2)(2sqrt6-2sqrt2))``= (2sqrt3(sqrt6-sqrt2))/((2sqrt6)^2 - (2sqrt2)^2) = (2sqrt3(sqrt6-sqrt2))/(24-8)= (2sqrt3(sqrt6-sqrt2))/16``= (sqrt18-sqrt6)/8 = (3sqrt2 - sqrt6)/8`
Answer:
Step-by-step explanation:
given :-
cos45 = 1/
sec30 = 2/
cosec30 = 2
according to question,
= (cos45 /sec30) + cosec30
= (1/ /2/) + 2
= (1/ */2) +2
= (/2) + 2
= ( + 4) / 2