Math, asked by manjannamanju014, 4 months ago

cos45÷sec30+cosec30 answer please​

Answers

Answered by dubeysudhanshu474
0

Answer:

LHS=RHS

@

Step-by-step explanation:

(cos 45°)/(sec 30° + cosec 30°)

(cos 45°)/(sec 30° + cosec 30°)`=(1/sqrt2)/(2/sqrt3+2) = (1/sqrt2)/((2+2sqrt3)/sqrt3)`

(cos 45°)/(sec 30° + cosec 30°)`=(1/sqrt2)/(2/sqrt3+2) = (1/sqrt2)/((2+2sqrt3)/sqrt3)``= sqrt3/(sqrt2(2+2sqrt3)) = sqrt3/(2sqrt2+2sqrt6)`

(cos 45°)/(sec 30° + cosec 30°)`=(1/sqrt2)/(2/sqrt3+2) = (1/sqrt2)/((2+2sqrt3)/sqrt3)``= sqrt3/(sqrt2(2+2sqrt3)) = sqrt3/(2sqrt2+2sqrt6)``= (sqrt3(2sqrt6-2sqrt2))/(((2sqrt6)+2sqrt2)(2sqrt6-2sqrt2))`

(cos 45°)/(sec 30° + cosec 30°)`=(1/sqrt2)/(2/sqrt3+2) = (1/sqrt2)/((2+2sqrt3)/sqrt3)``= sqrt3/(sqrt2(2+2sqrt3)) = sqrt3/(2sqrt2+2sqrt6)``= (sqrt3(2sqrt6-2sqrt2))/(((2sqrt6)+2sqrt2)(2sqrt6-2sqrt2))``= (2sqrt3(sqrt6-sqrt2))/((2sqrt6)^2 - (2sqrt2)^2) = (2sqrt3(sqrt6-sqrt2))/(24-8)= (2sqrt3(sqrt6-sqrt2))/16`

(cos 45°)/(sec 30° + cosec 30°)`=(1/sqrt2)/(2/sqrt3+2) = (1/sqrt2)/((2+2sqrt3)/sqrt3)``= sqrt3/(sqrt2(2+2sqrt3)) = sqrt3/(2sqrt2+2sqrt6)``= (sqrt3(2sqrt6-2sqrt2))/(((2sqrt6)+2sqrt2)(2sqrt6-2sqrt2))``= (2sqrt3(sqrt6-sqrt2))/((2sqrt6)^2 - (2sqrt2)^2) = (2sqrt3(sqrt6-sqrt2))/(24-8)= (2sqrt3(sqrt6-sqrt2))/16``= (sqrt18-sqrt6)/8 = (3sqrt2 - sqrt6)/8`

Answered by NamishPatil
1

Answer:

Step-by-step explanation:

given :-

cos45 = 1/\sqrt 2\\

sec30 = 2/\sqrt 3

cosec30 = 2

according to question,

= (cos45 /sec30) + cosec30

= (1/\sqrt2 /2/\sqrt3\\) + 2

= (1/\sqrt 2 *\sqrt3/2) +2

= (\sqrt3/2\sqrt2\\) + 2

= (\sqrt3 + 4\sqrt2) / 2\sqrt2

Similar questions