Math, asked by manishlodhe4682, 10 months ago

Cos45/sec30+cosec30
Find this value please

Answers

Answered by lcisharma
1

Answer:

 \frac{  \cos(45)  }{ \sec(30)  +  \cosec(30) }  =  \frac{ \frac{1}{ \sqrt{2} } }{ \frac{2  }{ \sqrt{3} }  +2 }  \\  =   \frac{ \frac{1}{ \sqrt{2} } }{ \frac{2(1 +  \sqrt{3} )}{ \sqrt{3} } }  =  \frac{ \sqrt{3} }{2 \sqrt{2}(1 +  \sqrt{3} ) }

this is your answer if it is helpful then mark it as the brain list and ❤️

Answered by sandy1816
0

 \frac{cos45 \degree}{sec30 \degree + cosec30 \degree}  \\  \\  =  \frac{ \frac{1}{ \sqrt{2} } }{ \frac{2}{ \sqrt{3} } + 2 }  \\  \\  =  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{ 2 + 2 \sqrt{3} }  \\  \\  =  \frac{ \sqrt{3} }{2 \sqrt{2}  + 2 \sqrt{6} }  \\  \\  =  \frac{ \sqrt{3} }{2 \sqrt{2}  + 2 \sqrt{6} }  \times  \frac{2 \sqrt{2}  - 2 \sqrt{6} }{2 \sqrt{2} - 2 \sqrt{6}  }  \\  \\  =  \frac{2 \sqrt{6}  - 2 \sqrt{18} }{8 - 24}  \\  \\  =  \frac{2 \sqrt{6}  - 6 \sqrt{2} }{ - 16}  \\  \\  =  \frac{3 \sqrt{2}  -  \sqrt{6} }{8}

Similar questions