CBSE BOARD X, asked by krsanjeev1806, 1 year ago

Cos4a=1-8cos^2a+8cos^4a

Answers

Answered by menakatatap49utf
80
cos (4A) = cos (2•(2A)) 
↔ cos (2•(2A)) = 2•cos² (2A) - 1 
↔ cos (4A) = 2•cos² (2A) - 1 
↔ cos (4A) = 2•(2•cos² A - 1)² - 1 
↔ cos (4A) = 2•(2•cos² A - 1)² - 1 
↔ cos (4A) = 2•{4•(cos² A)² - 4•(cos² A) + 1} - 1
↔ cos (4A) = 8•cos⁴ A - 8•cos² A + 2 - 1 
↔ cos (4A) = 8•cos⁴ A - 8•cos² A + 1 
↔ cos (4A) = 1 - 8•cos² A + 8•cos⁴ A .... qid 
Answered by mergus
21

cos (4x) = cos(2x + 2x)

Using, cos (A+B) = cosAcosB - sinAsinB

cos(2x + 2x) = cos(2x) cos(2x) - sin(2x) sin(2x) = (cos(2x))^2 - (sin(2x))^2 = (cos(x +x ))^2 - (sin(x + x))^2

(cos(x +x ))^2 - (sin(x + x))^2=( cos x cos x - sin x sin x )^2 - ( sin x cos x + sin x cos x )^2

= ( cos^2 x-sin^2 x )^2-( 2 sin x cos x)^2

= ( cos^2 x-sin^2 x )^2-4sin^2 x cos^2 x

= ( cos^2 x-(1-cos^2 x ) )^2-4(1 - cos^2 x ) cos^2 x

= ( 2 cos^2 x-1 )^2-4cos^2 x +4cos^4 x

= 8 cos^4 x-8 cos^2 x+1

Hence proved.

Similar questions