cos⁴A-sin⁴ A + 1 = 2 cos²A.
proof
Answers
Answered by
9
Answer:
Step-by-step explanation:
LHS=Cos^4A-Sin^4A+1
=(Cos^2A)^2-(Sin^2A)^2+1
={(Cos^2A+Sin^2A)(Cos^2A-Sin^2A)}+1
={1*(cos^2A-sin^2A)+1
=Cos^2A+1-sin^2A
=Cos^2A+Cos^2A
=2Cos^2A
Answered by
5
To prove:
cos⁴A - sin⁴A +1=2cos²A
LHS:
cos⁴A - sin⁴A +1
=(cos⁴A - sin⁴A) + 1
Of the form a² - b²=(a+b)(a-b),
=(cos²A+sin²A)(cos²A-sin²A)+1
We know that,
sin²A + cos²A=1
=cos²A-sin²A+1
From sin²A + cos²A=1,
cos²A=1-sin²A................(1)
=(1-sin²A)-sin²A+1
=2-2sin²A
=2(1-sin²A). [Using (1)]
=2cos²A
=RHS
Hence,proved
Similar questions