cos⁴A − sin⁴4 A is equal to
(a)2 cos² A + 1
(b)2 cos²A − 1
(c)2 sin² A − 1
(d)2 sin²2 A + 1
Answers
Answered by
17
Answer:
cos⁴A − sin⁴A is equal to 2cos²A - 1 .
Among the given options option (b) (2cos²A - 1) is correct.
Step-by-step explanation:
Given : cos⁴A − sin⁴A
= (cos²A)² − (sin² A)²
= (cos²A + sin²A) (cos²A − sin²A)
[By using identity , a² - b² = (a + b) (a - b)]
= 1 × (cos²A − sin²A)
[By using an identity , sin² θ + cos² θ = 1]
= cos²A − sin²A
= cos²A − (1 - cos²A)
[By using an identity, sin²θ = (1- cos²θ)]
= cos²A − 1 + cos²A
= 2cos²A - 1
Hence, cos⁴A − sin⁴A is equal to 2cos²A - 1 .
HOPE THIS ANSWER WILL HELP YOU...
Answered by
10
cos^4 A- sin^4A
(cos^2A + sin^2A)(cos^2A - sin^2A)
cos^2A - sin^2A
2cos^2 - 1
option b
Similar questions
English,
6 months ago
Math,
6 months ago
Computer Science,
6 months ago
Physics,
1 year ago
Science,
1 year ago