Math, asked by loardkev1019, 10 months ago

(cos⁴A-sin⁴A) is equal to​

Answers

Answered by Shreya091
46

\huge\star{\mathfrak{\underline{\red{Answer}}}}

\large{\sf{\underline{\underline{Step \: by \: step \: explanation:-}}}}

\large\leadsto\tt\ Cos^4A \: - \: Sin^4A  \\ \\ \large\leadsto\tt\ (Cos^2A)^2 \: - \: (Sin^2A)^2

Using identity ;

\tt\ (a+b) (a-b)\: = \: a^2 \: - \: b^2

 \rule{200}{2}

\large\leadsto\tt\ (Cos^2A \: + \: Sin^2A)(Cos^2A - Sin^2A)

According to trigonometric identities;

\tt\ Sin^2a \: + \: Cos^2a \: = \: 1

\tt\ Sin^2A \: = \: (1- Cos^2A)

So;

\large\leadsto\tt\ (1)(Cos^2A- Sin^2A) \\ \\ \large\leadsto\tt\ Cos^2A \: - ( \: 1-Cos^2A) \\ \\ \large\leadsto\tt\ Cos^2A \: - \: 1 \: + \: Cos^2A \\ \\ \large\leadsto\tt\ 2Cos^2A \:  - \: 1

Similar questions