Math, asked by sasmitap, 9 months ago

Cos⁴Alpha-Sin⁴Alpha=a, Then 1-a/1+a=?
(optA) Tan²Alpha
(optB)Cot²Alpha
(optC) -Tan²Alpha
(optD) -Cot² Alpha
 \alpha

Answers

Answered by DrNykterstein
7

Given,

⇒ cos⁴ ɑ - sin⁴ ɑ = a

To Find,

➞ (1 - a)/(1 + a)

Solution,

We have,

⇒ cos⁴ ɑ - sin⁴ ɑ = a

⇒ (cos² ɑ)² - (sin² ɑ)² = a

⇒ (cos² ɑ + sin² ɑ)(cos² ɑ - sin² ɑ) = a

a² - b² = (a + b)(a - b)

a² - b² = (a + b)(a - b) sin² θ + cos² θ = 1

⇒ cos² ɑ - sin² ɑ = a

Now, we need to find the value of (1 - a)/(1 + a), Substitute value of a:

⇒ { 1 - (cos² ɑ - sin² ɑ) } / { 1 + cos² ɑ - sin² ɑ }

⇒ ( 1 - cos² ɑ + sin² ɑ ) / ( cos² ɑ + cos² ɑ )

sin² θ + cos² θ = 1

⇒ ( sin² ɑ + sin² ɑ ) / 2cos² ɑ

⇒ 2sin² ɑ / 2cos² ɑ

tan² ɑ [ ∵ tan θ = sin θ / cos θ ]

Hence, The value of (1 - a)/(1 + a) is tan² ɑ

Option A is correct.

Some Formulae :-

sin² θ + cos² θ = 1

1 + tan² θ = sec² θ

1 + cot² θ = cosec² θ

tan θ = sin θ / cos θ

sec θ = 1/cos θ

cosec θ = 1/sin θ

cot θ = 1/tan θ

Similar questions