Math, asked by anilrock1989, 11 months ago

cos4theta- sin4theta=1 - 2sin2theta​

Answers

Answered by shivimishra3843
5

cos4θ−sin4θ=1−2sin2θ

Left Side :

cos4θ−sin4θ

=(cos2θ−sin2θ)(cos2θ+sin2θ)

=(cos2θ−sin2θ).1

=cos2θ−sin2θ

=1−sin2θ−sin2θ

=1−2sin2θ

=

Right Side

Answered by ButterFliee
2

\huge\underline\mathrm{GIVEN:-}

  • cos\theta- sin\theta=1 - 2sin²\theta

\huge\underline\mathrm{SOLUTION:-}

\large\rm\red{\star\: Taking\: L.H.S. \: \star }

\longmapsto\sf{ (cos^2\theta - sin^2\theta )(cos^2\theta + sin^2\theta )} Using Identity, ( - ) = (a+ b)(a -b)

\longmapsto\sf{ (cos^2\theta - sin^2\theta ) \times 1}

(  Using Identity, Sin² \theta+ cos²\theta= 1

\longmapsto\sf{ 1- sin^2\theta - sin^2\theta }( ∴ From Identity 1) , Cos² \theta= 1 - sin² \theta

\longmapsto\large\sf\red{ 1 -2\: sin^2\theta }

\rm\red{ L.H.S. \iff R.H.S.}

\boxed{\begin{minipage}{7 cm}\textbf{Fundamental  Trigonometric Identities} \\ \\ $\sin^2\theta + \cos^2\theta = 1\\ \\ 1 + \tan^2\theta = \sec^2\theta \\ \\ 1+\cot^2\theta = \text{cosec}^2\, \theta$ \end{minipage}}

Similar questions