Math, asked by rabbitruchi, 6 months ago

(cos5 theta+i sin5 theta)/(cos 3 theta-i sin 3 theta)^(2) slove by De Moivres thm...​

Answers

Answered by senboni123456
11

Step-by-step explanation:

We have,

z =  \dfrac{( \cos5 \theta+i  \sin5  \theta)}{{ \{ \cos( 3  \theta)-i  \sin( 3  \theta)  \}}^{2}}

 \implies \: z =  \dfrac{ {e}^{i(5 \theta)} }{{ \{ \cos(  - 3  \theta) + i  \sin(  - 3  \theta)  \}}^{2}} \\

 \implies \: z =  \dfrac{ {e}^{i(5 \theta)} }{   \{ {e}^{ i(  - 3  \theta)}   \}^{2}} \\

 \implies \: z =  \dfrac{ {e}^{i(5 \theta)} }{    {e}^{ i(  - 6 \theta)}   } \\

 \implies \: z =  {e}^{i \{(5 \theta)  -   (- 6 \theta)  \} } \\

 \implies \: z =  {e}^{i (5 \theta + 6 \theta)  } \\

 \implies \: z =  {e}^{i (11\theta )  } \\

 \implies \: z =   \cos(11 \theta)  + i \sin( 11\theta)

Similar questions