cos570°-sin510°-sin330°cos390°
Answers
Answered by
1
LHS
= cos 570° sin 510°+ sin (-330°) cos (-390°)
We know that,
sin (-x) = -sin (x) and cos (-x) = +cos (x).
= cos 570° sin 510°+ [sin (-330°)] cos (-390°)
= cos 570° sin 510° - sin (-330°) cos (-390°)
= cos (90° × 6 + 30°) sin (90° × 5 + 60°) – sin (90° × 3 + 60°) cos (90° × 4 + 30°)
We know that cos is negative at 90° + θ i.e. in Q2 and when n is odd, sin → cos and cos → sin.
= -cos 30° cos 60° - [-cos 60°] cos 30°
= -cos 30° cos 60° + cos 60° cos 30° = 0
= RHS
Hence proved.
Similar questions
Math,
1 month ago
Science,
1 month ago
Computer Science,
1 month ago
Computer Science,
2 months ago
Math,
2 months ago
CBSE BOARD XII,
10 months ago