cos58°/sin32° + sin22°/cos68° - cos38°.cosec52°/√3(tan18°tan35°tan60°tan72°tan55°)
Answers
Answered by
3
Answer:
Step-by-step explanation:
Attachments:
MrChetan:
answer is root 3
Answered by
1
Answer:
4
Step-by-step explanation:
=cos58°/cos(90°-32°) + sin22°/sin(90°-68°) - cos38°*1/sin52° √3(tan60°*tan72°/cot72°*tan35°/cot35°)
=cos58°/cos58° + sin22°/sin22° - cos38°/cos(90°-52°) √3(tan60°*tan72°/cot72°*tan35°/cot35°)
=cos58°/cos58° + sin22°/sin22° - cos38°/cos38° √3(tan60°*tan72°/cot72°*tan35°/cot35°)
=1+1-1*√3*1*√3
=1+3
=4
Similar questions