Math, asked by sumitsay, 1 year ago

cos60+sin60÷cos60-sin60

Answers

Answered by PRIMEASHU
4
1 +√3/2whole divide by1-√3/2
Answered by smithasijotsl
0

Answer:

The value of \frac{cos60+sin60}{cos60-sin60} = -(2+√3)

Step-by-step explanation:

To find,

The value of \frac{cos60+sin60}{cos60-sin60}

Solution:

Recall the values

cos60 = \frac{1}{2}

sin60 = \frac{\sqrt{3} }{2}

\frac{cos60+sin60}{cos60-sin60} = \frac{\frac{1}{2}+\frac{\sqrt{3}}{2} }{\frac{1}{2}-\frac{\sqrt{3}}{2}} }

=\frac{\frac{1+\sqrt{3} }{2} }{\frac{1-\sqrt{3} }{2} }

= \frac{1+\sqrt{3} }{1-\sqrt{3} }

Now we need to rationalize the denominator

The rationalizing factor is 1+√3

Multiplying and dividing with the rationalizing factor we get,

\frac{1+\sqrt{3} }{1-\sqrt{3} }× \frac{1+\sqrt{3} }{1+\sqrt{3} }  = \frac{(1+\sqrt{3})^2}{1^2-(\sqrt{3})^2 }

= \frac{1+3+2\sqrt{3} }{1-3}

= \frac{4+2\sqrt{3} }{-2}

= -(2+√3)

The value of \frac{cos60+sin60}{cos60-sin60} = -(2+√3)

#SPJ3

Similar questions