Math, asked by ssridevisn, 8 months ago

Cos60°/sin30° + 2cos 0°/sin90°=k/2

Answers

Answered by ishantripathi601
1

Answer:

k=6

please mark me brainliest and please follow me

Attachments:
Answered by Anonymous
1

\sf\huge\blue{\underline{\underline{ Question : }}}

  • \sf\:\frac{\cos60}{\sin30} + \frac{2\:cos0}{sin90}=\frac{k}{2}

\sf\huge\blue{\underline{\underline{ Solution : }}}

Given that,

\sf\:\frac{\cos60}{\sin30} + \frac{2\:cos0}{sin90}=\frac{k}{2}

To find,

  • Value of k.

Let,

\sf\:\implies \frac{\cos60}{\sin30} + \frac{2\:cos0}{sin90}=\frac{k}{2}

  • cos 60° = 1/2
  • sin 30° = 1/2
  • cos 0° = 1
  • sin 90° = 1

\sf\:\implies \frac{\frac{1}{2}}{\frac{1}{2}} + \frac{2(1)}{1} = \frac{k}{2}

\sf\:\implies 1 + 2 = \frac{k}{2}

\sf\:\implies 3 = \frac{k}{2}

\sf\:\implies k = 3 \times 2

\sf\:\implies k = 6

\underline{\boxed{\bf{\purple{ \therefore k = 6.}}}}\:\orange{\bigstar}

More information:

\boxed{\begin{minipage}{8 cm} Fundamental Trigonometric Identities \\ \\$:\implies\sin^{2}\theta + cos^{2}\theta = 1 \\ \\ :\implies 1 + tan^{2}\theta = sec^{2}\theta \\ \\ : \implies 1 + cot^{2}\theta=\text{cosec}^2\, \theta$ \end{minipage}}

___________________________

Similar questions