Math, asked by ashreyasashi, 1 year ago

Cos6x = 32cos6x-48cos4x+18cos2x-1

Answers

Answered by MaheswariS
2

\underline{\textsf{To prove:}}

\mathsf{cos6x=32\,cos^6x-48\,cos^4x+18\,cos^2x-1}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{cos6x}

\mathsf{=cos3(2x)}

\textsf{Using the identities}

\boxed{\mathsf{cos3A=4\,cos^3A-3\,cosA}}

\boxed{\mathsf{cos2A=2\,cos^2A-1}}

\mathsf{=4\,cos^32x-3\,cos2x}

\mathsf{=4[2\,cos^2x-1]^3-3[2\,cos^2x-1]}

\textsf{Using the algebraic identity}

\boxed{\mathsf{(a-b)^3=a^3-b^3-3ab(a-b)}}

\mathsf{=4[2\,cos^2x-1]^3-3[2\,cos^2x-1]}

\mathsf{=4[8\,cos^6x-1-6\,cos^2x(2\,cos^2x-1)]-3[2\,cos^2x-1]}

\mathsf{=4[8\,cos^6x-1-12\,cos^4x+6\,cos^2x]-3[2\,cos^2x-1]}

\mathsf{=32\,cos^6x-4-48\,cos^4x+24\,cos^2x-6\,cos^2x+3}

\mathsf{=32\,cos^6x-4-48\,cos^4x+18\,cos^2x+3}

\mathsf{=32\,cos^6x-48\,cos^4x+18\,cos^2x-1}

\implies\boxed{\mathsf{cos6x=32\,cos^6x-48\,cos^4x+18\,cos^2x-1}}

Answered by smileyjiya
3

Step-by-step explanation:

COS6x=32cos^6x-48cos^4x+18cos^2x-1

Attachments:
Similar questions