cos6x+cos5x+cos4x=0 find the general solution
Answers
Answered by
6
Step-by-step explanation:
The given question is:
cos6θ+cos4θ+cos2θ+1=0
Using cosC+cosD=2cos(C+D2)cos(C−D2)and 1+cos2θ=2cos2θ we get:
⇒ 2cos5θcosθ+2cos2θ=0
⇒cosθ(cos5θ+cosθ)=0
⇒cosθ=0 [OR]cos5θ+cosθ=0
Simplifying the second expression by using cosC+cosD=2cos(C+D2)cos(C−D2) we get:
⇒2cos3θcos2θ=0
⇒ The solutions are θ∈(2n+1)π6,(2n+1)π4and(2n+1)π2
You can find the intersection of these sets to obtain the most generalized solution.
Similar questions