Math, asked by rahulnath12, 11 months ago

cos95° + cos 25° = 1/√2(cos10° + sin 10°)​

Answers

Answered by MaheswariS
11

\textbf{To prove:}

cos\,95^{\circ}+cos\,25^{\circ}=\dfrac{1}{\sqrt{2}}[cos\,10^{\circ}+sin\,10^{\circ}]

\textbf{Solution:}

\text{Consider,}

cos\,95^{\circ}+cos\,25^{\circ}

\text{Using the formula}

\boxed{\bf\,cosC+cosD=2\,cos(\frac{C+D}{2})\,\,cos(\frac{C-D}{2})}

=2\,cos(\frac{95^{\circ}+25^{\circ}}{2})\,cos(\frac{95^{\circ}-25^{\circ}}{2})

=2\,cos(\frac{120^{\circ}}{2})\,cos(\frac{70^{\circ}}{2})

=2\,cos\,60^{\circ}\,cos\,35^{\circ}

=2(\frac{1}{2})cos\,35^{\circ}

=cos\,35^{\circ}

=cos(45^{\circ}-10^{\circ})

\text{Using the formula}

\boxed{\bf\,cos(A-B)=cosA\,cosB+sinA\,sinB}

=cos\,45^{\circ}\,cos\,10^{\circ}+sin\,45^{\circ}\,sin\,10^{\circ}

=(\frac{1}{\sqrt{2}})cos\,10^{\circ}+(\frac{1}{\sqrt{2}})sin\,10^{\circ}

=\frac{1}{\sqrt{2}}[cos\,10^{\circ}+sin\,10^{\circ}]

\therefore\bf\,cos\,95^{\circ}+cos\,25^{\circ}=\dfrac{1}{\sqrt{2}}[cos\,10^{\circ}+sin\,10^{\circ}]

Find more:

PROVE THAT:

cos 12 cos 24 cos 36 cos 48 Cos 60 cos 72 cos 84 equal = 1 / 128​

https://brainly.in/question/9849513

Prove that : 8 sin 20 sin 40 sin 80 = (3)^1/2

https://brainly.in/question/2394832#

Answered by Anonymous
6

HI DEAR SHRESTA HERE!!!PLS SEE THE ANSWER !!!!

USING FORMULAS:-

COS C+COS D  = 2COS(C+D/2).COS(C-D/2)

COS(A-B)  =  COS A.COS B  +  SIN A.SIN B

LHS:-

=2cos(95+25/2)cos(95-25/2)

=2cos(120/2)cos(70/2)

=2cos60cos35

=2*1/2*cos 35

=cos35

=cos(45-10)

=cos45cos10 +sin45sin10

=1/√ 2 .cos10 +  1/√ 2. sin10

=1/√ 2(cos10  +  sin10)

=RHS

PLS THANK MY ANSWER ....!!!!!!!!!

:)

Similar questions