Cos9degrees+ Sin9degrees/Cos9degrees-Sin9degrees= Cot36degrees.
Answers
Answer:
LHS = (Cos9° + Sin9°) / (Cos9° - Sin9°)
Divide by Nr and Dr by Cos9° ...
LHS = (1 + Tan9°) / (1 - Tan9°)
= (Tan 45° + Tan 9°) / (1 - Tan 45° * Tan 9°)
= Tan (45°+9°)
= Tan 54°
= Cot 36°.
Hope it helps
And thanks for asking doubt
To prove : \frac{\cos 9+\sin 9}{\cos 9-\sin 9}=\cot 36
Proof :
Take LHS,
\frac{\cos 9+\sin 9}{\cos 9-\sin 9}
Take cos 9 common,
=\frac{1+\frac{\sin 9}{\cos 9}}{1-\frac{\sin 9}{\cos 9}}
=\frac{1+\tan 9}{1-\tan 9}
=\frac{\tan 45+\tan 9}{1-\tan 9\tan 45}
We know formula,
\tan(A+B)=\frac{\tan A+\tan B}{1-\tan A\tan B}
Here, A=45 and B=9
=\tan(45+9)
=\tan(54)
=\tan(90-36)
We know, \tan (90-\theta)=\cot \theta
=\cot 36
=RHS
Hence proved.
Click to let others know, how helpful is it