Math, asked by tamrakarangel90, 7 hours ago

CosA (1-CosA + Cos²A) - Cos²A(CosA-1)​

Answers

Answered by ᏚɑvɑgeᏀurL
33

\huge\boxed{\fcolorbox{red}{blue}{Answer}}

cosA(1+sinA)+cosA(1-sinA)/(1-sinA)(1+sinA)=4

cosA(1+sinA+1-sinA)/1-sin²A=4

cosA(2)/cos²A=4  [as sin²A+cos²A=1]

2/cosA=4

1/cosA=2

cosA=1/2

cosA=cos60°

∴A=60°

Answered by ZaraAntisera
6

Answer:

\mathrm{\cos \left(a\right)\left(1-\cos \left(a\right)+\cos ^2\left(a\right)\right)-\cos ^2\left(a\right)\left(\cos \left(a\right)-1\right)=\cos \left(a\right)}

Step-by-step explanation:

\mathrm{\cos \left(a\right)\left(1-\cos \left(a\right)+\cos ^2\left(a\right)\right)-\cos ^2\left(a\right)\left(\cos \left(a\right)-1\right)}

\mathrm{=\cos \left(a\right)-\cos ^2\left(a\right)+\cos ^3\left(a\right)-\cos ^2\left(a\right)\left(\cos \left(a\right)-1\right)}

\mathrm{=\cos \left(a\right)-\cos ^2\left(a\right)+\cos ^3\left(a\right)-\cos ^3\left(a\right)+\cos ^2\left(a\right)}

\mathrm{=\cos \left(a\right)}

Similar questions