Math, asked by sushmaayyanki, 3 months ago

cosa/1-sina +1- sin a/cosa = 2 seca​

Answers

Answered by Anonymous
90

Answer:

\huge\mathcal{\green{Hola!}}

\huge\mathfrak{\red{Answer}}

Step-by-step explanation:

To prove:-

 \huge \frac{ \: cos \: A}{1 - sin \: A}  -  \frac{1 - sin \: A}{cos \:  A} = 2 \: sec \: A

Trigonometric identities:-

 {sin}^{2} A \:  +  {cos}^{2} A = 1

 {sec}^{2} A -  {tan}^{2} A = 1

 {cosec}^{2} A = 1 +  {cot}^{2} A

Required Solution:-

: ➝ LHS:-

  • Taking the LCM we have;

 \frac{ {cos}^{2}A +  {(1 - sin \: A})^{2}  }{cos \: A(1 - sin \: A)}

  • Using the identity (a-b)^2 = a^2 + b^2 - 2ab we have;

 =  \frac{ {cos}^{2}A + 1 +  {sin}^{2}A - 2sin \: A  }{cos \: A(1 - sin \: A)}

  • As cos^2 A + sin^2 A = 1

\huge\mathcal{\green{Therefore,}}

 =  >  \frac{1 + 1 - 2 \: sin \: A}{cos \: A(1 - sin \: )}  =  \frac{2 - 2sin \: A}{cos \: A(1 - sin \: A)}

 \frac{2(1 - sin \: A)}{cos \: A(1 - sin \: A)}  =  \frac{2}{cos \: A}  = 2 \: sec \: A

= RHS

\huge\mathcal{\green{All \ the \ very \ best!}}

\huge\mathfrak{\red{@MissTranquil}}

\huge\fbox{\orange{be \ brainly}}

Attachments:
Answered by Anonymous
2

Answer:

nice misstriquil your answer is correct

Step-by-step explanation:

please give me thank you

Similar questions