cosA/1+sinA + 1+sinA/cosA = 2/cosA = 2secA proved that.
Answers
Prove:-
cosA/1+sinA + 1+sinA/cosA = 2/cosA = 2secA
L.H.S
cosA/(1+sinA) + (1+sinA)/cosA
= [ cos2A + (1+sinA)2 ] / (1+sinA)cosA (taking lcm)
-------> = cos2A + 1+ sin2A + 2sin A / (1+sinA)cosA
-------> = (cos2A + sin2A) +1+ 2sin A / (1+sinA)cosA
since,
cos2A+ sin2A = 1 ----- > 1+ 1+ 2sin A/(1+sinA)cosA
-------> 2+ 2sin A / (1+sinA)cosA
-------> 2(1 + sinA) / (1+sinA)cosA
-------> cancel the common term (1+sinA)
-------> 2/cosA = 2secA = R.H.S ( 1/cosA=secA)
@HarshPratapSingh
Answer:
L.H.S
cosA/(1+sinA) + (1+sinA)/cosA
= [ cos2A + (1+sinA)2 ] / (1+sinA)cosA (taking lcm)
-------> = cos2A + 1+ sin2A + 2sin A / (1+sinA)cosA
-------> = (cos2A + sin2A) +1+ 2sin A / (1+sinA)cosA
since,
cos2A+ sin2A = 1 ----- > 1+ 1+ 2sin A/(1+sinA)cosA
-------> 2+ 2sin A / (1+sinA)cosA
-------> 2(1 + sinA) / (1+sinA)cosA
-------> cancel the common term (1+sinA)
-------> 2/cosA = 2secA = R.H.S ( 1/cosA=secA)