Math, asked by kousumighoshal, 6 months ago

cosA/1-sinA=1+sinA/cosA​

Answers

Answered by Anonymous
1

Solution:-

 \rm \implies \:  \dfrac{ \cos A}{1 -  \sin  A }  =  \dfrac{1 +  \sin A}{ \cos A}

Using Cross multiplication methods

 \rm \implies \: ( \cos A)( \cos A) = (1 -  \sin A)(1 +  \sin A)

Now use this identity

 \rm \implies(a - b )(a + b) =  {a}^{2}   -  {b}^{2}

We can write

 \rm \implies  \cos ^{2} A  = 1 -  \sin ^{2}  A

 \rm \implies  \cos ^{2} A  + \sin ^{2}  A = 1

We know that

 \rm \implies  \cos ^{2}  \theta  + \sin ^{2}   \theta = 1

Put the value

 \rm \implies  \cos ^{2} A  + \sin ^{2}  A = 1

 \rm \implies 1= 1

Hence proved

More identities

 \rm \to \tan \theta =  \dfrac{ \sin  \theta }{ \cos\theta}

 \rm \to \:  \cos( \theta)  =  \dfrac{ \cos( \theta) }{ \sin( \theta) }

Similar questions