Math, asked by vishakhakhandekar78, 9 months ago

cosA/1+sinA+ 1+sinA/cosA= 2sec A prove RHS​

Answers

Answered by amitkumar44481
9

Given :

  \tt\dagger\:\frac{ \cos \: A}{1 +  \sin \: A } +  \frac{1 +  \sin \: A}{ \cos \: A}  = 2 \sec \: A.

Solution :

Taking LHS,

   \tt \longmapsto\frac{ \cos \: A}{1 +  \sin \: A } +  \frac{1 +  \sin \: A }{ \cos \: A} \\

  \tt\longmapsto\frac{  { \cos}^{2} A +  {(1 +  \sin \: A)}^{2} }{(1 +  \sin \: A) \cos \: A} \\

 \tt\longmapsto \frac{ { \cos}^{2}A + 1 +  { \sin }^{2}  A + 2 \sin \: A }{(1 +  \sin \: A) \cos \: A }  \\

 \tt\longmapsto \frac{2 + 2 \sin \: A}{(1 +  \sin \: A) \cos \: A  }  \\

 \tt\longmapsto \frac{2(1 +  \sin \: A) }{(1 +  \sin \: A) \cos \: A}  \\

 \tt\longmapsto \frac{2}{ \cos \: A}  \\

 \tt\longmapsto2 \sec \: A. \\

Hence Proved.

\rule{200}1

Some Identities

  • Sin²theta + Cos² theta = 1.
  • 1 + tan² theta = Sec² theta.
  • 1 + Cot² theta = Cosec² theta.
Answered by anshi60
27

QuEsTiOn :-

Prove that

 \dfrac{cosa}{1 + sina}  +  \dfrac{1 + sina}{cosa}  = 2seca

Trigonometry formula Used

 \implies {sin}^{2}  \theta +  {cos}^{2}  \theta = 1

 \implies {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2} + 2ab

 \implies \:  \frac{1}{cos \theta}  = sec \theta

SoLuTiOn :-

Taking LHS

 \implies \frac{cosA}{1 + sinA}  +  \frac{1 + sinA}{cosA}   \\  \\ By \: cross \: multiplication \\  \\  \implies \frac{ {cos}^{2}A +  {(1 + sinA)}^{2}  }{(1 + sinA)cosA}  \\  \\  \implies \frac{ {cos}^{2}A + 1 +  {sin}^{2}A + 2sinA  }{(1 + sinA)cosA}  \\  \\  \implies \frac{1 + 1 + 2sinA}{(1 + sinA)cosA}  \\  \\  \implies \frac{2 + 2sinA}{(1 + sinA)cosA}  \\  \\  \implies \frac{2( 1 + sinA)}{(1 + sinA)cosA}  \\   \\   \implies \frac{2}{cosA}  \\  \\  \implies2secA \:  = RHS

Here ,

{\purple{\boxed{\large{\bold{LHS = RHS}}}}}

Hence Proved ✓

Similar questions