English, asked by animeshdebbarma2020, 10 months ago

cosA/1+sinA+1+sinA/cosA=2secA​

Answers

Answered by sourya1794
166

\huge{\mathfrak{\green{\red{\bf\:S}\pink{o}\purple{l}\green{u}\orange{t}\blue{i}\blue{o}\red{n:-}}}}

\tt\:LHS=\dfrac{cosA}{1+sinA}+\dfrac{1+sinA}{cosA}

\tt\longrightarrow\dfrac{{cos}^{2}A+(1+sinA)^2}{(1+sinA)\times\:cosA}

\tt\longrightarrow\dfrac{{cos}^{2}A+{(1)}^{2}+2\times\:1\times\:sinA+{(sinA)}^{2}}{(1+sinA)\times\:cosA}

\tt\longrightarrow\dfrac{{cos}^{2}A+1+2sinA+{sin}^{2}A}{(1+sinA)\times\:cosA}

\tt\longrightarrow\dfrac{{cos}^{2}A+{sin}^{2}A+1+2sinA}{(1+sinA)\times\:cosA}

\tt\longrightarrow\dfrac{1+1+2sinA}{(1+sinA)\times\:cosA}

\tt\longrightarrow\dfrac{2+2sinA}{(1+sinA)\times\:cosA}

\tt\longrightarrow\dfrac{2\cancel{(1+sinA)}}{\cancel{(1+sinA)}\times\:cosA}

\tt\longrightarrow\:2\times\:\dfrac{1}{cosA}

\tt\longrightarrow\:2\:secA

\tt\:LHS=RHS

\tt\:hence,proved

Answered by sandy1816
2

 \frac{cosa}{1 + sina}  +  \frac{1 + sina}{cosa}  \\  \\  =  \frac{ {cos}^{2}a + ( {1 + sina})^{2}  }{(1 + sina)cosa}  \\  \\  =  \frac{ {cos}^{2}a + 1 +  {sin}^{2} a + 2sina }{(1 + sina)cosa}  \\  \\  =  \frac{2 + 2sina}{(1 + sina)cosa}  \\  \\  =  \frac{2}{cosa}  \\  \\  = 2seca

Similar questions