cosA/1-sinA=secA+tanA
Answers
Answered by
0
Step-by-step explanation:
(cosA)/(1-sinA)
={(cosA)(1+sinA)}/{(1-sinA)(1+sinA)}
={(cosA)(1+sinA)}/(1-sin^2A)
={(cosA)(1+sinA)}/(cos^2A)
=(1+sinA)/(cosA)
=(1/cosA)+(sinA/cosA)
=secA+tanA
Answered by
1
Question:-
Solution:-
By using this identity
We get
Use cross multiplication method, we get
By using identity => Sin²A + Cos²A = 1 => Cos²A = 1 - Sin²A
We get ,
Similar questions