Math, asked by sumit5656, 9 months ago

cosA/1-sinA=secA+tanA​

Answers

Answered by zoya12515
0

Step-by-step explanation:

(cosA)/(1-sinA)

={(cosA)(1+sinA)}/{(1-sinA)(1+sinA)}

={(cosA)(1+sinA)}/(1-sin^2A)

={(cosA)(1+sinA)}/(cos^2A)

=(1+sinA)/(cosA)

=(1/cosA)+(sinA/cosA)

=secA+tanA

Answered by Anonymous
1

Question:-

 \bf \:  \frac{ \cos(A) }{1 -  \sin(A) }  =  \sec(A)  +  \tan(A)

Solution:-

\bf \:  \frac{ \cos(A) }{1 -  \sin(A) }  =  \sec(A)  +  \tan(A)

By using this identity

 \bf \:  \to \:  \sec(A)  =  \frac{1}{ \cos(A) }

 \bf \:  \to \:  \tan(A)  =  \frac{ \sin(A) }{ \cos(A) }

We get

\bf \:  \frac{ \cos(A) }{1 -  \sin(A) }  =   \frac{1}{ \cos(A) }   +  \frac{ \sin(A) }{ \cos(A) }

\bf \:  \frac{ \cos(A) }{1 -  \sin(A) }  =   \frac{1 +   \sin(A)  }{ \cos(A) }

Use cross multiplication method, we get

  \bf\cos {}^{2} (A)  = 1 -  \sin {}^{2} (A)

By using identity => Sin²A + Cos²A = 1 => Cos²A = 1 - Sin²A

We get ,

  \bf\cos {}^{2} (A)  = cos {}^{2} (A)

 \bf \:  {\red{hence \: proved}}

Similar questions