Math, asked by mrigankomajumder74, 3 months ago

cosA/1-sinA=secA+tanA​

Answers

Answered by zeesoftzs
0

Answer:

L. H. S =  \frac{cos A}{1 - sin A } \\  =   \frac{cos A}{1 - sin A } \times  \frac{ 1  + sin A }{1  +  sin A } \\  =  \frac{cos A( 1  + sin A )}{1 - sin  ^{2} A } \\  = \frac{cos A(1  + sin A)}{cos^{2}  A} \\  =  \frac{1 +sin A}{cos  A }   \\ =  \frac{1}{cos  A}  +  \frac{sinA }{cos  A } \\  = secA + tanA = R. H. S\\ hence \: proved

Answered by zaidkhan47
0

Answer:

To prove :- cosA/1-sin A=secA+tanA

Proof:-

LHS= cosA/1-sinA

   \frac{ \cos \: a }{1 -  \sin \: a } \\

Rationalizing the denominator,

 \frac{cos \: a}{1 - sin \: a}  \times  \frac{1  +  \: sin \: a}{1  +  \: sin \: a}  \\

 =  \frac{cos \: a(1  +  \sin \: a) }{1   -  sin^{2}  \: a}   \\  =  \frac{cos \: a(1  +   \sin \: a) }{cos^{2}  \: a} \\  =  \frac{1  +   \sin \: a }{cos \: a} \\  =  \frac{1}{cos \: a}   +  \frac{ \sin \: a }{cos \: a}  \\  = sec \: a  +  tan \: a

LHS=secA+tanA

RHS=secA+tanA

Therefore,

LHS=RHS........hence proved

Similar questions