Math, asked by raceakin, 4 days ago

cosA/1-sinA=secA+tanA

Answers

Answered by llxdevilgirlxll
1

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{cc} \bf { \underline{ Solution \: }} \\ \\ \tt\green{ \frac{CosA}{1 - Sin A } = SecA + TanA} \\  \purple \ \: \\\tt \pink{ \frac{CosA}{1 - Sin A } } \\  \purple\: \: \: \: \: \\\tt \purple{ \frac{CosA}{1 - Sin A} \times  \frac{1 +Sin A }{1 + Sin A}  } \\  \purple\ \\\tt \: \: \: \: \: \: \: \: \: \: \: \: \: \: \red{ \frac{CosA(1  + Sin A) }{1 - Sin  {}^{2} A } } \\ \purple \ \\\tt \orange{  \frac{CosA(1 +Sin A ) }{Cos {}^{2} A} }  \\ \purple\ \\ \tt  \pink {  \frac{1 + Sin A }{CosA}  } \\  \\  \:  \tt \red{Sec A + TanA} \\  \\  \:  \tt \blue{Hope  \: it's  \: helps  \: you }& \end{array}} \\ \end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered} \end{gathered} \end{gathered}

Similar questions