Math, asked by karan8930, 1 year ago

CosA/1-SinA=Tan(π/4+A/2)

Answers

Answered by mathdude200
17
use of two concepts
sin2A = 2sinA cosA
Attachments:
Answered by mysticd
11

 \red{\frac{Cos A}{1 - SinA } } \\= \frac{ Cos^{2} \frac{A}{2} - Sin^{2} \frac{A}{2} } { 1 - 2 Sin \frac{A}{2} Cos \frac{A}{2}} \\= \frac{ (Cos \frac{A}{2} - Sin \frac{A}{2} )( Cos \frac{A}{2} +Sin \frac{A}{2})} { Cos^{2} \frac{A}{2} + Sin^{2} \frac{A}{2}  - 2 Sin \frac{A}{2} Cos \frac{A}{2}}

 = \frac{ (Cos \frac{A}{2} - Sin \frac{A}{2} )( Cos \frac{A}{2} +Sin \frac{A}{2})} { (Cos \frac{A}{2} - Sin\frac{A}{2} )^{2}}

 = \frac{ ( Cos \frac{A}{2} +Sin \frac{A}{2})} { (Cos\frac{A}{2} - Sin\frac{A}{2} )}

 Dividing \: numerator \:and \: denominator \\by \: Cos \frac{A}{2} , we \:get

 = \frac{ 1 + tan \frac{A}{2}}{ 1 - tan \frac{A}{2}} \\= \frac{ tan \frac{\pi}{4} + tan \frac{A}{2}}{ 1 - tan \frac{\pi}{4} tan \frac{A}{2}} \\\green {= tan \Big( \frac{\pi}{4} + \frac{A}{2} \Big)} \\= RHS

•••♪

Similar questions