Math, asked by hemanths94, 3 months ago

cosa/1+sins+1+sina/cosa=2seca​

Answers

Answered by AbhinavRocks10
7

Hi !

\frac{1+ sinA}{cosA} + \frac{cosA}{1+ sinA}

Cross multiplication,

\color{brown}\frac{(1+sinA) ^{2} + cos ^{2}A }{(1+sinA)cosA}(1+sinA)cosA

\color{red}\frac{1 + 2sinA + sin ^{2}A + cos ^{2}A }{(1+sinA)cosA}

we know that ,

sin²A + cos²A = 1

\frac{1 + 1 + 2 sinA}{(1+sinA)cosA}

\color{blue}\frac{2 + 2sinA}{(1+sinA)(cosA)}

\color{green}\frac{2(1+sinA)}{(1+sinA)(cosA)}

1 + sinA gets cancelled ,

\frac{2}{cos}

2* 1/cosA

  • We know that , 1/cosA = secA

hence,

2*secA = 2secA = RHS

proved !

Answered by sandy1816
0

Answer:

 \frac{cosa}{1 + sina}  +  \frac{1 + sina}{cosa}  \\  \\  =  \frac{ {cos}^{2}a + ( {1 + sina})^{2}  }{(1 + sina)cosa}  \\  \\  =  \frac{ {cos}^{2}a + 1 +  {sin}^{2} a + 2sina }{(1 + sina)cosa}  \\  \\  =  \frac{2 + 2sina}{(1 + sina)cosa}  \\  \\  =  \frac{2}{cosa}  \\  \\  = 2seca

Similar questions