Math, asked by nikhilkaushal112448, 3 months ago

cosA
: 1- Tan A

+sinA

1- Cott
A = sin A + cos A​

Answers

Answered by sharanyalanka7
2

Answer:

Step-by-step explanation:

Correct Question :-

Prove that :-

\dfrac{cosA}{1 - tanA} + \dfrac{sinA}{1 - cotA} = sinA + cosA

Solution :-

Taking L.H.S :-

\dfrac{cosA}{1 - tanA} + \dfrac{sinA}{1 - cotA}

We know that :-

tanA = sinA/cosA

cotA = cosA/sinA

Substituting values :-

\dfrac{cosA}{1 - \dfrac{sinA}{cosA}} + \dfrac{sinA}{1 - \dfrac{cosA}{sinA}}

\dfrac{cosA}{\dfrac{cosA - sinA}{cosA}} + \dfrac{sinA}{\dfrac{SinA - cosA}{sinA}}

\dfrac{cosA\times cosA}{cosA - sinA} + \dfrac{sinA\times sinA}{sinA - cosA}

\dfrac{cos^2A}{cosA - sinA} + \dfrac{sin^2A}{sinA - cosA}

\dfrac{cos^2A}{cosA - sinA} + \dfrac{sin^2A}{-(cosA - sinA)}

\dfrac{cos^2A}{cosA - sinA} - \dfrac{sin^2A}{cosA - sinA}

\dfrac{cos^2A - sin^2A}{cosA - sinA}

a^2 - b^2 = (a + b)(a - b)

\dfrac{(cosA + sinA)(cosA - sinA)}{cosA - sinA}

= cosA + sinA

= R.H.S

Hence, L.H.S = R.H.S

Answered by kaushik9900
0

Answer:

cdhklkugffffyiiiygghjkooiu

Similar questions