Math, asked by mohanrtyayushi07, 16 hours ago

cosA/1-tanA+sin²A/sinA-cosA=sinA+cosA​

Attachments:

Answers

Answered by varadad25
10

Question:

Prove that:

\displaystyle{\sf\:\dfrac{\cos\:A}{1\:-\:\tan\:A}\:+\:\dfrac{\sin^2\:A}{\sin\:A\:-\:\cos\:A}\:=\:\sin\:A\:+\:\cos\:A}

Answer:

\displaystyle{\boxed{\red{\sf\:\dfrac{\cos\:A}{1\:-\:\tan\:A}\:+\:\dfrac{\sin^2\:A}{\sin\:A\:-\:\cos\:A}\:=\:\sin\:A\:+\:\cos\:A\:}}}

Step-by-step-explanation:

We have given a trigonometric equation.

We have to prove that equation.

The given trigonometric equation is

\displaystyle{\sf\:\dfrac{\cos\:A}{1\:-\:\tan\:A}\:+\:\dfrac{\sin^2\:A}{\sin\:A\:-\:\cos\:A}\:=\:\sin\:A\:+\:\cos\:A}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{\cos\:A}{1\:-\:\tan\:A}\:+\:\dfrac{\sin^2\:A}{\sin\:A\:-\:\cos\:A}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{\cos\:A}{1\:-\:\dfrac{\sin\:A}{\cos\:A}}\:+\:\dfrac{\sin^2\:A}{\sin\:A\:-\:\cos\:A}\:\qquad\cdots\left[\:\because\:\tan\:A\:=\:\dfrac{\sin\:A}{\cos\:A}\:\right]}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{\cos\:A}{\dfrac{\cos\:A\:-\:\sin\:A}{\cos\:A}}\:+\:\dfrac{\sin^2\:A}{\sin\:A\:-\:\cos\:A}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{\cos\:A\:\times\:\cos\:A}{\cos\:A\:-\:\sin\:A}\:+\:\dfrac{\sin^2\:A}{\sin\:A\:-\:\cos\:A}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{\cos^2\:A}{\cos\:A\:-\:\sin\:A}\:+\:\dfrac{\sin^2\:A}{\sin\:A\:-\:\cos\:A}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{\cos^2\:A}{\cos\:A\:-\:\sin\:A}\:\times\:\left(\:\dfrac{-\:1}{-\:1}\:\right)\:+\:\dfrac{\sin^2\:A}{\sin\:A\:-\:\cos\:A}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{-\:\cos^2\:A}{\sin\:A\:-\:\cos\:A}\:+\:\dfrac{\sin^2\:A}{\sin\:A\:-\:\cos\:A}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{-\:\cos^2\:A\:+\:\sin^2\:A}{\sin\:A\:-\:\cos\:A}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{\sin^2\:A\:-\:\cos^2\:A}{\sin\:A\:-\:\cos\:A}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{(\:\sin\:A\:+\:\cos\:A\:)\:\cancel{(\:\sin\:A\:-\:\cos\:A\:)}}{\cancel{(\:\sin\:A\:-\:\cos\:A\:)}}\:\qquad\cdots[\:\because\:a^2\:-\:b^2\:=\:(\:a\:+\:b\:)\:(\:a\:-\:b\:)\:]}

\displaystyle{\implies\sf\:LHS\:=\:\sin\:A\:+\:\cos\:A}

\displaystyle{\sf\:RHS\:=\:\sin\:A\:+\:\cos\:A}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:LHS\:=\:RHS\:}}}}

Hence proved!

Answered by takename25
12

Answer:

Step-by-step explanation:

Hope it helps you

Attachments:
Similar questions