Math, asked by nikhil554, 10 months ago

cosa/1+tana-sina/1+cota=cosa-sina​

Answers

Answered by shai3490lesh
0

Answer:

Step-by-step explanation:

LHS =cosA/(1-tanA)+sinA/(1-cotA)

       =cos A/(1 - sin A/cos A) + sin A/(1 - cos A/sin A)

       =cos²A/ (cos A - sin A) + sin²A / (sin A - cos A)

       =cos²A/ (cos A - sin A) - sin²A / (cos A - sin A)

       =(cos ² A - sin ² A) / (cos A - sin A)

       =(cos A - sin A)(cos A + sin A) / (cos A - sin A)

       =cos A + sin A

Answered by TanmayGorai
1

Answer:

Since

( \tan(a)  =  \frac{ \sin(a) }{ \cos(a) })

&

 \cot(a)  =  \frac{1}{ \tan(a) }

lhs =  \frac{ \cos(a) }{1 +  \frac{ \sin(a) }{ \cos(a) } }    -  \frac{ \sin(a) }{1 +  \frac{ \cos(a) }{ \sin(a) } }

 =  \frac{ \cos(a) }{ \frac{ \cos(a) +  \sin(a)  }{ \cos(a) } }  -  \frac{ \sin(a) }{ \frac{ \sin(a)  +  \cos(a) }{ \sin(a) } }

 =  \:  \frac{ { \cos(a) }^{2}   - { \sin(a) }^{2} }{  \sin(a )+  \cos(a)  }

{since \:  {a}^{2}  -  {b}^{2}  = (a + b)( a- b)}

 =  \frac{( \cos(a) +  \sin(a)  )( \cos(a) -  \sin(a)  )}{( \cos(a)  +  \sin(a) ) }

 =   \cos(a)  -  \sin(a)

|hence \: proved \: |

I hope this will help you.

Please mark this as Brainliest.

¯\(◉‿◉)/

Similar questions