Math, asked by aditennis91, 4 months ago

cosA/1 - tanA + sinA/1 - cotA = cosA + sinA​

Answers

Answered by prabhas24480
2

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

cosA/1 - tanA + sinA/1 - cotA = cosA + sinA</p><p>

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

LHS

=cosA/(1-tanA)+sinA/(1-cotA)

=cos A/(1 - sin A/cos A) + sin A/(1 - cos A/sin A)

=cos²A/ (cos A - sin A) + sin²A / (sin A - cos A)

=cos²A/ (cos A - sin A) - sin²A / (cos A - sin A)

=(cos ² A - sin ² A) / (cos A - sin A)

=(cos A - sin A)(cos A + sin A) / (cos A - sin A)

=cos A + sin A  \:  \:  \:  \:  \:  \:  \: i.e RHS

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

__________________________________________

Answered by UniqueBabe
1

Answer:

LHS

=cosA/(1-tanA)+sinA/(1-cotA)=cosA/(1−tanA)+sinA/(1−cotA)

=cos A/(1 - sin A/cos A) + sin A/(1 - cos A/sin A)=cos A/(1−sin A/cosA)+sinA/(1−cosA/sinA)

=cos²A/ (cos A - sin A) + sin²A / (sin A - cos A)=cos²A/(cosA−sinA)+sin²A/(sinA−cosA)

=cos²A/ (cos A - sin A) - sin²A / (cos A - sin A)

=(cos ² A - sin ² A) / (cos A - sin A)

=(cos A - sin A)(cos A + sin A) / (cos A - sin A)

=cos A + sin A \: \: \: \: \: \: \: i.e RHS=cosA+sinAi.eRHS

Similar questions