Math, asked by jayareddy982, 10 months ago

cosA/1-tanA +sinA/1-cotA=sinA+cosA​

Answers

Answered by ayush3520
1

Answer is in attachment

Attachments:
Answered by pansumantarkm
0

Step-by-step explanation:

 \frac{cos \alpha }{1 - tan \alpha }  +  \frac{sin \alpha }{1 - cot \alpha }  \\  \\  =  \frac{cos \alpha }{1 - tan \alpha }  +  \frac{sin \alpha }{1 -  \frac{1}{tan \alpha } }  \\  \\  =  \frac{cos \alpha }{1 - tan \alpha }  +  \frac{sin \alpha }{ \frac{tan \alpha  - 1}{tan \alpha } }  \\  \\  =  \frac{cos \alpha }{1 - tan \alpha }  +  \frac{tan \alpha  \: sin \alpha }{tan \alpha  - 1}  \\  \\  =  \frac{cos \alpha }{1 - tan \alpha }  -  \frac{tan \alpha  \: sin \alpha }{1 - tan \alpha }  \\  \\  =  \frac{cos \alpha  - tan \alpha  \:  \: sin \alpha}{1 - tan \alpha }  \\  \\  =  \frac{cos \alpha  -  \frac{sin \alpha }{cos \alpha }sin \alpha  }{1 -  \frac{sin \alpha }{cos \alpha } }  \\  \\  =  \frac{ {cos}^{2} \alpha -  {sin}^{2}  \alpha   }{cos \alpha  - sin \alpha }  \\  \\  =  \frac{(cos \alpha  - sin \alpha )(cos \alpha  + sin \alpha )}{(cos \alpha  - sin \alpha )}  \\  \\  = cos \alpha  + sin \alpha  \:  \:  \:  \:  \:  \:  \:  \: (hence \: proved)

//Hope this will Helped You//

//Please mark it as Brainliest//

Similar questions