Math, asked by ananthhebbar, 10 months ago

cosA/1-tanA+sinA/1-cotA=sinA+CosA​

Answers

Answered by rsahoo2704
6

Answer:

You have not given the exact question.....

Of we have to prove this then your required answer is in the image attached......

Step-by-step explanation:

Please mark me as brainliest......

And one thing I've ommitted some steps...

I hope you'll understand it easily.....ʘ‿ʘ

Attachments:
Answered by Anonymous
15

Solution :

 \implies \sf\frac{ \cos A}{1 -  \tan A}  +  \frac{ \sin A}{1 -  \cot A} \\  \\\implies \sf \frac{ \cos A}{1 -  \frac{ \sin A}{ \cos A} } +  \frac{ \sin A}{1 -  \frac{ \cos A}{ \sin A} }  \\  \\ \implies \sf \frac{ \cos A}{ \frac{ \cos A-  \sin A}{ \cos A} } +  \frac{ \sin A}{ \frac{ \sin A-  \cos A}{ \sin A} }  \\  \\\implies \sf  \frac{ { \cos}^{2} A}{ \cos A-  \sin A} +  \frac{ { \sin}^{2} A}{ \sin A-  \cos A} \\  \\\implies \sf \frac{ { \cos}^{2} A}{ \cos -  \sin A} -  \frac{ { \sin}^{2}A }{ \cos A-  \sin A}  \\  \\\implies \sf \frac{  { \cos}^{2}A - { \sin}^{2}A  }{ \cos A -  \sin A} \\  \\  \implies \sf\frac{( \cos A+  \sin A)( \cos A-  \sin A)}{ \cos A-  \sin A}  \\  \\  \implies \sf\sin A +  \cos A

LHS = RHS

Hence Proved

Identity used :

 \implies\sf \tan A = \dfrac{\sin A}{\cos A} \\ \\ \sf \implies a^2 - b^2 = (a+b)(a-b)

Similar questions