cosA/1-tanA+sinA/1-cotA = sinA+cosA
Answers
Answered by
0
Answer:
Step-by-step explanation:
1−tanA
cosA
+
1−cotA
sinA
1−
cosA
sinA
cosA
+
1−
sinA
cosA
sinA
cosA−sinA
cos
2
A
−
cosA−sinA
sin
2
A
cosA−sinA
cos
2
A−sin
2
A
cosA−sinA
(cosA+sinA)(cosA−sinA)
sinA+cosA
Answered by
0
Answer:
sinA+cosA
Step-by-step explanation:
cosA/1-(sinA/cosA)+sinA/1-(cosA/sinA)
(where tanA=sinA/cosA,cotA=cosA/sinA)
by lcm we get
cos^2A/cosA-sinA+sin^2A/sinA-cosA
taking -negative common the lcm of denominator becomes cosA-sinA
after lcm we get
cos^2A-sin^2A/cosA-sinA
where cos^2A-sin^2A=(cosA+sinA)(cosA-sinA)
(cosA+sinA)(cosA-sinA)/(cosA-sinA)
cosA-sinA gets cancel from numerator and denominator and we get cosA+sinA
RHS:
sinA+cosA
hence proved LHS=RHS
Similar questions