cosA=12/13 then sinA=
Answers
Answer:
Hopes it is right
Step-by-step explanation:
cosA=
13
12
---- ( 1 )
We know,
sin
2
A+cos
2
A=1
⇒ sin
2
A+(
13
12
)
2
=1 [ From ( 1 ) ]
⇒ sin
2
A+
169
144
=1
⇒ sin
2
A=1−
169
144
⇒ sin
2
A=
169
169−144
⇒ sin
2
A=
169
25
⇒ sinA=
13
5
----- ( 2 )
Now,
tanA=
cosA
sinA
⇒ tanA=
13
12
13
5
[ From ( 1 ) and ( 2 ) ]
⇒ tanA=
12
5
∴ sinA=
13
5
=0.385
∴ tanA=
12
5
=0.417
Answer:
Step-by-step explanation:
Cos A = 12 /13 ----( 1 )
We know the Trigonometric identity
Sin²A + cos² A = 1
Sin² A + ( 12 /13 )² = 1
Sin² A + 144 / 169 = 1
Sin² A = 1 - ( 144 / 169 )
Sin² A = ( 169 - 144 ) / 169
Sin² A = 25 / 169
Sin A = √( 5/ 13 )²
Sin A = 5 / 13 --- ( 2 )
Therefore ,
SinA = 5/13,
I hope this helps you.
Plz mark me as a Brainliest