CosA=12/13find 1/1+sin^25A+1/1+cos^25A
Answers
Answered by
0
Given:
cosA = 12/13
To Find:
1/(1+sin²5A) + 1/(1+cos²5A)
Solution:
First lets find the value of sin5A .
We know,
- sin5A = sin (2A + 3A)
- sin (2A + 3A) = sin2Acos3A + cos2Asin3A
Given cos A = 12/13
- sin A = 5/13
We know sin2A = 2sinAcosA
- sin2A = 2 x 5 x 12 / 13 x 13 = sin2A = 120/169
- cos2A = √1-sin²2A = √1 - 120²/169² =√ (169-120)(120+169)/169
- cos2A = √49x289/169 = 7x17/169 = 119/169
We know sin3A = sin(2A+A) = sin2AcosA + cos2AsinA
- sin3A = 120 x 12/169 x 13 + 119 x 5/169 x 13
- sin3A =(1440 + 595 )/13³
- sin3A = 2035/2197
- cos3A = √1-sin²3A = √(2197-2035)(2197+2035)/2197
- cos3A = 828/13³
Now Lets find sin5A = sin3Acos2A + sin2Acos3A = 2035x119/ + 120x828/
- sin5A = (242165 + 99360)/371293 =341525/371293 = 0.9198
- cos5A = √1- sin²5A = √(371293-341525)(371293+341525)/371293
- cos5A = 145668/371293 = 0.39
Therefore sin10A = 2sin5Acos5A
- sin5Acos5A = 0.36
Now
- 1/(1+sin²5A) + 1/(1+cos²5A) = (1+ cos²5A + 1 + sin²5A)/(1+sin²5A)(1+cos²5A) =>
- 3/(1 + sin²5A + cos²5A + (sin5Acos5A)²
- ==>
- 3/(2+0.1296)
- 3/2.1296
- The answer = 1.41
Therefore 1/(1+sin²5A) + 1/(1+cos²5A) = 1.41
Similar questions
Science,
4 months ago
Environmental Sciences,
4 months ago
Science,
9 months ago
Math,
9 months ago
Chemistry,
1 year ago