Math, asked by chandraana, 1 year ago

cosA=3/4 then 32 sinA/2 sin5A/2​

Answers

Answered by trueboy
10

The answer is in attachment

thank you

Attachments:
Answered by TRISHNADEVI
14
 \red{ \huge{ \underline{ \overline{ \mid{ \bold{ \purple{ \: \: SOLUTION \: \: \red{ \mid}}}}}}}}

 \underline{ \underline{ \bold{ \: \: GIVEN \: \: : }}} \to \: \: \: \: \: \: \bold{cos \: A = \frac{ 3}{4} } \\ \\ \underline{ \underline{ \bold{\: \: TO \: \: FIND \: \: : }}} \to \: \: \: \bold{32 \: sin \: \frac{A}{2} \: \: sin \: \frac{5A}{2} = }

 \underline{ \bold{ \: \: We \: \: know \: \: that \: \: }} \\ \\ \star \: \: \boxed{ \bold{2 \: sin \: X.sin \: Y = cos \: (X- Y) - cos\:(X + Y) }}

 \bold{Here,} \\ \\ \: \: \: \: \: \: \: \: \: \bold{32 \: sin \: \frac{A}{2} \: sin \: \frac{5A}{2} = 16(2 \: sin \: \frac{A}{2} \: sin \: \frac{5A}{2} )} \\ \\ \underline{ \bold{ \: \: Using \: \: the \: \: above \: \: formula \: \: }} \\ \\ \bold{32 \: sin \: \frac{A}{2} \: sin \: \frac{5A}{2} } \\ \\ \bold{ = 16 \: (2 \: sin \: \frac{A}{2} \: sin \: \frac{5A}{2} ) } \\ \\ \bold{ = 16 \: [ \: cos \: ( \frac{A}{2} - \frac{5A}{2} ) - cos \: ( \frac{A}{2} + \frac{5A}{2} )] } \\ \\ \bold{ = 16 \: [cos \: ( \frac{A - 5A}{2}) - cos \: ( \frac{A + 5A}{2} )]} \\ \\ \bold{ = 16 \: [cos \: \frac{ (- 4A)}{2} - cos \: \frac{6A}{2} \: ] } \\ \\ \bold{ = 16 \: [ \: cos \: ( - 2A) \: - \: cos \: 3A \: ]} \\ \\ \bold{ = 16 \: ( \: cos \: 2A \: - \: cos \: 3A \: ) \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [As \: \: cos \: ( - X) =cos \: X \: ]}

 \bold{ \therefore \: \: 32 \: sin \: \frac{A}{2} \: sin \: \frac{5A}{2} = 16 \: (cos \: 2A \: + \: cos \: 3A)}

 \bold{Again,} \\ \\ \underline{ \bold{ \: \: We \: \: know \: \: that \: \: }} \\ \\ \star \: \: \boxed{ \bold{ \: \: \: cos \: 2X = 2 \: cos {}^{2}X - 1 \: \: }} \\ \\ \star \: \: \boxed{ \bold{ \: \: cos \: 3X = 4 \: cos {}^{3} X - 3 \: cos \: X \: \: }}

 \underline{ \bold{ \: \: Using \: \: the \: \: above \: \: formulas \: \: }} \\ \\ \bold{32 \: sin \: \frac{A}{2} \: sin \: \frac{5A}{2} } \\ \\ \bold{ = 16 \: ( \: cos \: 2A \: - \: cos \: 3A \: )} \\ \\ \bold{ = 16 \: [(2 \: cos {}^{2}A - 1) - (4 \: cos {}^{3}A - 3 \: cos \: A)] } \\ \\ \bold{ = 16(2 \: cos {}^{2}A - 1 - 4 \: cos {}^{3}A + 3 \: cos \: A) } \\ \\ \bold{ = 16 \: [ \: \: 2 \: ( \frac{3}{4}) {}^{2} - 1 - 4 \: ( \frac{3}{4}) {}^{3} + 3 \times \frac{3}{4} \: \: ] } \\ \\ \bold{ = 16 \: [2 \times \frac{9}{16} - 1 - 4 \times \frac{27}{64} + \frac{9}{4} ] } \\ \\ \bold{ = 16 \: [\frac{9}{8} - 1 - \frac{27}{16} + \frac{9}{4}]} \\ \\ \bold{ = 16 \: \times \: \frac{36- 32 - 54 + 72}{ 32} } \\ \\ \bold{ = 16 \times \frac{22}{32} } \\ \\ \bold{ = \cancel{16} \times \frac{ \cancel{2 }\times 11}{ \cancel{2 }\times \cancel{ 16}} } \\ \\ \bold{ = 11}

 \bold{ \therefore \: \: \underline{ \: \: \red{32 \: sin \: \frac{A}{2} \: sin\: \frac{5A}{2} = 11 \: \: \: \: }}}

muakanshakya: Awesome Answer ! :)
Similar questions