Math, asked by parinitayadav202, 7 months ago

cosA=3/5 then find the value of sin square A+cos square A​

Answers

Answered by salinajeet72gmailcom
1

Step-by-step explanation:

sorry I am in class 9 so I can't understand or able to give answer of this question

Answered by TheProphet
2

S O L U T I O N :

\underline{\bf{Given\::}}

cos A = 3/5

\underline{\bf{Explanation\::}}

Firstly, attachment a figure of right angled Δ A/c to the given question.

As we know that,

\boxed{\bf{cos\:\theta = \frac{Base}{Hypotenuse} }}

A/q

\mapsto\tt{cos\:A = \dfrac{3}{5} = \dfrac{BC}{AC} }

\underline{\underline{\tt{By\:\:using\:\:Pythagoras\:\:theorem\::}}}

⇒ (Hypotenuse)² = (Base)² + (Perpendicular)²

⇒ (AC)² = (BC)² + (AB)²

⇒ (5)² = (3)² + (AB)²

⇒ 25 = 9 + (AB)²

⇒ (AB)² = 25-9

⇒ (AB)² = 16

⇒ AB = √16

⇒ AB = 4 unit

Now,

\longrightarrow\tt{sin^{2} A + cos^{2} A}

\longrightarrow\tt{\bigg(\dfrac{Perpendicular}{Hypotenuse} \bigg) ^{2} + \bigg(\dfrac{Base}{Hypotenuse} \bigg)^{2}}

\longrightarrow\tt{\bigg(\dfrac{AB}{AC} \bigg) ^{2} + \bigg(\dfrac{BC}{AC} \bigg)^{2}}

\longrightarrow\tt{\bigg(\dfrac{4}{5} \bigg) ^{2} + \bigg(\dfrac{3}{5} \bigg)^{2}}

\longrightarrow\tt{\dfrac{16}{25} + \dfrac{9}{25} }

\longrightarrow\tt{\dfrac{16+9}{25}}

\longrightarrow\tt{\cancel{\dfrac{25}{25}}}

\longrightarrow\bf{1}

Thus,

The sin²A + cos²A will be 1 .

Attachments:
Similar questions