Math, asked by aasthajaryal, 9 months ago



cosA^3+sinA^3/cosA+sinA +cosA^3-sinA^3/cosA-sinA

Attachments:

Answers

Answered by IamIronMan0
3

Answer:

We know

 {a}^{3}  +  {b}^{3}  = (a + b)( {a}^{2}  +  {b}^{2}  - ab) \\  \\  \frac{a {}^{3}  +  {b}^{3} }{ {a}^{} + b }  =  {a}^{2}  +  {b}^{2} - ab  \\   \\ and \\  \\ {a}^{3}   -  {b}^{3}  = (a  -  b)( {a}^{2}  +  {b}^{2}   +  ab) \\  \\ \frac{a {}^{3}   -  {b}^{3} }{ {a}^{}  -  b }  =  {a}^{2}  +  {b}^{2}  + ab

So your question remains

( think a = cosA and b = sinA )

( {a}^{2}  +  {b}^{2}  + ab) +(  {a}^{2} +  {b}^{2}   - ab) \\  \\  = 2( {a}^{2}  +  {b}^{2} ) \\  \\  = 2( \sin {}^{2} (  \alpha )  +  \cos {}^{2} ( \alpha ) ) \\  \\  = 2 \times 1 \\  \\  = 2

Answered by ITzBrainlyGuy
6

TO PROVE:

Prove that

 \small{  \sf{ \frac{ {cos}^{3}A +  {sin}^{3} A }{cosA  +  sinA } +  \frac{ {cos}^{3} A -  {sin}^{3}A }{cosA - sinA} = 2  }}

ANSWER:

Taking LHS

Using

a³ + b³ = (a + b)(a² + b² - ab)

Similarly

a³ - b³ = (a - b)(a² + b² + ab)

 \small{ \sf{ \frac{ \cancel{(cosA + sinA)}( {cos}^{2} A +  {sin}^{2} A - sinAcosA)}{ \cancel{(cosA + sinA)}} +  \frac{ \cancel{(cosA  -  sinA)}( {cos}^{2}A +  {sin}^{2} A + sinAcosA )}{ \cancel{(cosA - sinA)}}  }}

We know that

cos²A + sin²A = 1

  = \small{ \sf{1 + \cancel{ sinAcosA} + 1 -  \cancel{sinAcosA}}}

 = 1 + 1

 = 2

LHS = RHS

Hence proved

Similar questions