Math, asked by Anonymous, 4 months ago

cosA + cos2A = 1 then find the value of sin2A + sin4A.​

Answers

Answered by BrainlyKingDiv
12

Answer:

The value of sin

2

a+sin

4

a is 1

Step-by-step explanation:

Given

\cos a +\cos^2a=1cosa+cos

2

a=1

we have to find the value of \sin^2a+\sin^4asin

2

a+sin

4

a

As, \sin^2a+\cos^2a=1sin

2

a+cos

2

a=1

Given \cos a+\cos^2a=1cosa+cos

2

a=1

⇒ \cos a=1-\cos^2a=\sin^2acosa=1−cos

2

a=sin

2

a

\sin^2a+\sin^4asin

2

a+sin

4

a

Put the value of sin^2asin

2

a

= \cos a+\cos^2acosa+cos

2

a

=11

Similar questions