cosA + cos2A = 1 then find the value of sin2A + sin4A.
Answers
Answered by
12
Answer:
The value of sin
2
a+sin
4
a is 1
Step-by-step explanation:
Given
\cos a +\cos^2a=1cosa+cos
2
a=1
we have to find the value of \sin^2a+\sin^4asin
2
a+sin
4
a
As, \sin^2a+\cos^2a=1sin
2
a+cos
2
a=1
Given \cos a+\cos^2a=1cosa+cos
2
a=1
⇒ \cos a=1-\cos^2a=\sin^2acosa=1−cos
2
a=sin
2
a
\sin^2a+\sin^4asin
2
a+sin
4
a
Put the value of sin^2asin
2
a
= \cos a+\cos^2acosa+cos
2
a
=11
Similar questions