cosa+cos3A+cos5A+cos7A/sinA+sin3A+sin5A+sin7A
Answers
Answered by
3
Answer:
Cos7A + os3A = 2cos5Acos2A
cos5A + cosA = 2cos3Acos2A
(cos7A + os3A) - (cos5A + cosA) = 2cos2A(cos5A - cos3A)
sin7A - sin3A = 2cos5Asin2A
sin5A - sinA = 2cos3Asin2A
(sin7A - sin3A) - (sin5A - sinA) = 2sin2A(cos5A - cos3A)
(cos7A + os3A - cos5A - cosA)/(sin7A - sin3A - sin5A + sinA)
= {2cos2A(cos5A - cos3A)}/{2sin2A(cos5A - cos3A)}
= cot2A
Please mark it as brainliest
Answered by
0
Answer:
{(cosA+cos7A) + (cos3A+cos5A)}/{(sinA+sin 7A)+(sin3A+sin5A)}
(2cos4A.cos3A+2cos4A.cosA)/(2sin4A.cos3A+2sin4A.cosA)
2cos4A(cos3A+cosA)/{2sin4A(cos3A+cosA)}
=cot4A ans
Similar questions