CosA-cos3A-cos5A+cos7A/SinA-sin3A+sin5A-sin7A=Tan2A
Answers
Answered by
6
cos7A + os3A = 2cos5Acos2A
cos5A + cosA = 2cos3Acos2A
(cos7A + os3A) - (cos5A + cosA) = 2cos2A(cos5A - cos3A)
sin7A - sin3A = 2cos5Asin2A
sin5A - sinA = 2cos3Asin2A
(sin7A - sin3A) - (sin5A - sinA) = 2sin2A(cos5A - cos3A)
(cos7A + os3A - cos5A - cosA)/(sin7A - sin3A - sin5A + sinA)
= {2cos2A(cos5A - cos3A)}/{2sin2A(cos5A - cos3A)}
= cot2A
cos5A + cosA = 2cos3Acos2A
(cos7A + os3A) - (cos5A + cosA) = 2cos2A(cos5A - cos3A)
sin7A - sin3A = 2cos5Asin2A
sin5A - sinA = 2cos3Asin2A
(sin7A - sin3A) - (sin5A - sinA) = 2sin2A(cos5A - cos3A)
(cos7A + os3A - cos5A - cosA)/(sin7A - sin3A - sin5A + sinA)
= {2cos2A(cos5A - cos3A)}/{2sin2A(cos5A - cos3A)}
= cot2A
SteveUday49:
prove that Tan2A
Answered by
9
cos7A + os3A = 2cos5Acos2A
cos5A + cosA = 2cos3Acos2A
(cos7A + os3A) - (cos5A + cosA) = 2cos2A(cos5A - cos3A)
sin7A - sin3A = 2cos5Asin2A
sin5A - sinA = 2cos3Asin2A
(sin7A - sin3A) - (sin5A - sinA) = 2sin2A(cos5A - cos3A)
(cos7A + os3A - cos5A - cosA)/(sin7A - sin3A - sin5A + sinA)
= {2cos2A(cos5A - cos3A)}/{2sin2A(cos5A - cos3A)}
= cot2A
Similar questions