Math, asked by subratmishra, 1 year ago

(cosa+cosb)^2+(sina+sinb)^2=4cos^2(A-B/2)

Answers

Answered by SunilChoudhary1
58
this is soulation of your questions
Attachments:
Answered by mysticd
47

Solution:

LHS = (cosA+cosB)²+(sinA+sinB)²

= (cos²A+2cosAcosB+cos²B)+

(sin²A+2sinAsinB+sin²B)

/* By algebraic identity:

(x+y)² = +2xy+ */

Rearranging the terms, we get

= (cos²A+sin²A)+(cos²B+sin²B)+2(cosAcosB+sinAsinB)

= 1+1+2cos(A-B)

________________________

we know that,

i) cos²x + sin²x = 1

ii) cosxcosy+sinxsiny = sin(x-y)

________________________

= 2+2cos(A-B)

= 2[1+cos(A-B)]

\boxed {1+cos\theta = 2cos^{2}\frac{\theta}{2}}

= 2\times 2cos^{2}\frac{(A-B)}{2}

=4cos^{2}\frac{(A-B)}{2}

=$RHS$

Therefore,

(cosA+cosB)²+(sinA+sinB)²

=4cos^{2}\frac{(A-B)}{2}

••••

Similar questions