(cosA + cosB) square + sinA-sin B square=
Answers
Answered by
0
first of all this is not history it is maths so your selection of subjects is only wrong..
Answered by
0
Prove (cosA+cosB)^2+(sinA-sinB)^2 = 4cos^2(A+B)/2 (cosA+cosB)^2 + (sinA-sinB)^2 => (cos^2A + cos^2B + 2cosAcosB) + (sin^2A + sin^2B - 2sinAsinB) => cos^2A + cos^2B + sin^2A + sin^2B + 2cosAcosB - 2sinAsinB => cos^2A + sin^2A + cos^2B + sin^2B + 2(cosA*cosB - sinA*sinB) => 1 + 1 + 2(cosA*cosB - sinA*sinB) => 2 + 2(cosA*cosB - sinA*sinB) => 2 (1 + (cosA*cosB + sinA*sinB)) => 2 * (1 + cos(A-B)) {Because: cosA*cosB - sinA*sinB = cos(A+B)} => 2 * 2cos^2 ((A+B)/2) => 4cos^2 (A+B)/2
Similar questions