cosA sin(B-c) +sinB sin(c-a) + cosc sin (a-b) =0
Answers
Answer:
To Prove: cos A . sin ( B - C ) + cos B . sin ( C - A ) + cos C . sin ( A - B ) = 0
We use the the following result,
sin ( x - y ) = sin x . cos y - cos x . sin y
LHS
= cos A . sin ( B - C ) + cos B . sin ( C - A ) + cos C . sin ( A - B )
= cos A ( sin B . cos C - cos B . sin C ) + cos B ( sin C . cos A - cos C . sin A ) + cos C ( sin A . cos B - cos A . sin B )
= cos A . sin B . cos C - cos A . cos B . sin C + cos B . sin C . cos A - cos B . cos C . sin A + cos C . sin A . cos B - cos C . cos A . sin B
= 0 + 0 + 0
= 0
RHS
= 0
LHS = RHS
Hence, Proved
Answer:
Answer
The proof is explained below :
Step-by-step explanation:
Using Sine rule in a triangle ,
Now, LHS = a·sinA - b·sinB
= k·sin²A - k·sin²B { Using Sine rule equations }
= k·[sin(A + B)·sin(A - B)]
= k·sin(π - C)·sin(A - B) { By angle sum property of a triangle sum of all angles is 180 ⇒ A + B + C = π ⇒ A + B = π - C }
= k·sinC·sin(A - B)
= c·sin(A - B) = R.H.S.
So, LHS = RHS
Hence, a·sinA - b·sinB = c·sin(A - B)