Math, asked by asiasheo297, 1 year ago

cosA-sinA+1 / cosA +sinA-1 =cosecA + cotA

Answers

Answered by manavjaison
2

Heya friend !

L.H.S

\frac{cos A - sin A + 1}{cos A + sin A - 1}

After rationalizing, we get,

\frac{(cos A - sin A +1)(cos A + sin A + 1)}{(cos A + sin A - 1)(cos A + sin A + 1)}

Now, we can put the identity of :-

(a-b)(a+b) = a^{2} - b^{2}  in both numerator and denominator.

In numerator,

a = cos A + 1                    b = sin A

In denominator,

a = cos A + sin A             b = 1

For further clarification, we can rewrite the equation as :-

\frac{[(cos A + 1) - sin A] * [(cos A + 1)+sinA]}{[(cos A + sin A)-1]*[(cos A + sin A)+1]}  

\frac{(cosA+1)^{2}-sin^{2} A }{(cosA+sinA)^{2} - 1^{2} }

\frac{cos^{2}A + 1 + 2cos A - sin^{2}A  }{cos^{2}A +sin^{2}A + 2sinAcosA - 1 }\\

\frac{2cos^{2}A+2cosA }{2sinAcosA}                                     [cos^{2}A = 1 -  sin^{2}A] and [sin^{2}A+ cos^{2}A =1]

\frac{2cosA(cosA+1)}{2cosAsinA}

⇒  \frac{cosA+1}{sinA}

By taking the denominator separately with both the terms in the numerator, we get,            

\frac{cosA}{sinA} + \frac{1}{sinA}

cotA + cosec A            = R.H.S.

Hence Proved !                        

Thanks !

#BAL #answerwithquality

Similar questions