Math, asked by Brainlyshine, 1 year ago

CosA-SinA+1/CosA+SinA-2=CosecA+CotA

Prove it ❤⏪

Answers

Answered by Anonymous
4

Answer:

hey mate plz refer to attachment

hope it helps uh

Attachments:
Answered by Anonymous
0

ANSWER:-

Given:

 \frac{cos \: </u><u>A</u><u> - sin \: </u><u>A</u><u>+ 1}{cos \: </u><u>A</u><u>+ sin \: </u><u>A</u><u>- 1}

To prove:

CosecA + CotA.

Proof:

Take L.H.S.

  =  &gt;  \frac{cos \: A - sin \: A + 1}{cos \: A+ sin \: A- 1}  \\ Dividing \: all \:terms \: by \: sin \: A\: ,we \: get; \\  \\  =  &gt;  \frac{cot \: A - 1 + cosec \: A}{cot \: A + 1 - cosec \: A}  \\  \\  =  &gt;  \frac{cot \: A + cosec  \: A - 1}{cot \: A - cosec \: A + 1}  \\  \\  =  &gt;  \frac{cot \: A + cosec \: A - (cosec {}^{2} A  -  {cot}^{2} A) }{cot \: A - cosec \: A + 1}  \\  \\  =  &gt;  \frac{cot \: A + cosec \: A(1 - cosec \: A + cot \: A)}{cot \: A - cosec \: A + 1}  \\  \\  =  &gt; cot \: A + cosec \: A \:\:\: [R.H.S]

Hence,

Proved.

Hope it helps ☺️

Similar questions