cosA-sinA=1 prove that cosA+sinA=+_1
Answers
Answered by
1
sinA1+cosAsinA1+cosA
=(sinA)(1−cosA)1−cos2A=(sinA)(1−cosA)1−cos2A
=(sinA)(1−cosA)sin2A=(sinA)(1−cosA)sin2A
=1−cosAsinA=1−cosAsinA
=1sinA−cosAsinA=1sinA−cosAsinA
=cosecA−cotA=cosecA−cotA
∴sinA1+cosA=cosecA−cotA
=(sinA)(1−cosA)1−cos2A=(sinA)(1−cosA)1−cos2A
=(sinA)(1−cosA)sin2A=(sinA)(1−cosA)sin2A
=1−cosAsinA=1−cosAsinA
=1sinA−cosAsinA=1sinA−cosAsinA
=cosecA−cotA=cosecA−cotA
∴sinA1+cosA=cosecA−cotA
Answered by
0
sinA1+cosAsinA1+cosA
=(sinA)(1−cosA)1−cos2A=(sinA)(1−cosA)1−cos2A
=(sinA)(1−cosA)sin2A=(sinA)(1−cosA)sin2A
=1−cosAsinA=1−cosAsinA
=1sinA−cosAsinA=1sinA−cosAsinA
=cosecA−cotA=cosecA−cotA
∴sinA1+cosA=cosecA−cotA
=(sinA)(1−cosA)1−cos2A=(sinA)(1−cosA)1−cos2A
=(sinA)(1−cosA)sin2A=(sinA)(1−cosA)sin2A
=1−cosAsinA=1−cosAsinA
=1sinA−cosAsinA=1sinA−cosAsinA
=cosecA−cotA=cosecA−cotA
∴sinA1+cosA=cosecA−cotA
Similar questions