Cosa- sina=1÷root 2 general solution
Answers
Answer:
A = nπ / 2 + ( -1 )ⁿ ( π / 12 )
Step-by-step explanation:
Given---> CosA - SinA = 1 /√2
To find ---> General solution of given trigonometric equation
Solution---> ATQ,
CosA - SinA = 1 /√2
Squaring both sides , we get,
=> ( CosA - SinA )² = ( 1 / √2 )²
We have an identity,
( a - b )² = a² + b² - 2ab , applying it here , we get,
=> Cos²A + Sin²A - 2 SinA CosA = 1 / 2
We have an identity, Sin²θ + Cos²θ = 1 , applying it here , we get.
=> 1 - 2 SinA CosA = 1 / 2
=> - 2 SinA CosA = 1 /2 - 1
=> - 2 SinA CosA = - 1 / 2
=> 2 SinA CosA = 1 / 2
We know that, Sin2θ = 2 Sinθ Cosθ , applying it here , we get,
=> Sin2A = 1 / 2
=> Sin2A = Sin( π / 6 )
We know that general value of Sin is
{ nπ + ( -1 )ⁿ α } , applying it here , we get,
=> Sin2A = Sin { nπ + ( -1 )ⁿ π / 6 }
=> 2A = nπ + ( -1 )ⁿ π / 6
=> A = ( nπ / 2 ) + ( - 1 )ⁿ ( π / 12 )